Researchers Develop Blue-, Yellow-, And Red-Emitting Graphene Quantum Dots

Researchers Develop Blue-, Yellow-, And Red-Emitting Graphene Quantum Dots - Electronics Featured Graphene
PL spectra of GQDs (a), PEI1800 GQDs (b), and PEI600 GQDs (c) at different excitation wavelengths. Inset: photograph of aqueous solution of these three GQDs under room light (left) and 365 nm UV irradiation lamp (right). UV-vis absorption spectra (d) of GQDs, PEI1800 GQDs, and PEI600 GQDs dispersed in water. (© ACS) (click on image to enlarge)

Graphene quantum dots (GQDs) show great potential in the fields of photoelectronics, photovoltaics, biosensing, and bioimaging owing to their unique photoluminescence (PL) properties, including excellent biocompatibility, low toxicity, and high stability against photobleaching and photoblinking.

However, further development of GQDs is limited by their synthetic methodology and unclear PL mechanism. Therefore, it is urgent to find efficient and universal methods for the synthesis of GQDs with high stability, controllable surface properties, and tunable PL emission wavelength.

In new work reported in ACS Applied Materials & Interfaces (“Red, Yellow, and Blue Luminescence by Graphene Quantum Dots: Syntheses, Mechanism, and Cellular Imaging”), researchers in China have synthesized PL-tunable GQDs with blue, yellow, and red emission colors by coating with polyethyleneimine (PEI) of different molecular weights.

The team employed TEM, AFM, XRD, FTIR, XPS, DLS, and zeta potential to characterize the structures of the as-prepared GQDs and they stufied the PL mechanism by theoretical calculations.


The full story is available below.