Graphene-Asphalt Anodes To Improve Li-Ion Batteries

Graphene-Asphalt Anodes To Improve Li-Ion Batteries - Batteries Featured Graphene
SEM images show an anode of asphalt, nanoribbons and lithium at left and the same material without lithium at right

Rice University scientists have developed highly efficient battery anodes using graphene and asphalt. To achieve this, the researchers mixed asphalt with conductive graphene nanoribbons and coated the composite with lithium metal through electrochemical deposition. The anodes showed exceptional stability after more than 500 charge-discharge cycles. A high-current density of 20 milliamps per square centimeter demonstrated the material’s promise for use in rapid charge and discharge devices that require high-power density.

“The capacity of these is enormous, but what is equally remarkable is that we can bring them from zero charge to full charge in five minutes, rather than the typical two hours or more needed with other batteries,” Prof. James Tour said.

The team combined the anode with a sulfurized-carbon cathode to make full batteries for testing. The batteries showed a high-power density of 1,322 watts per kilogram and high-energy density of 943 watt-hours per kilogram.

The full story is available below.

Source: Graphene-info