Lightweight Catalyst For Artificial Photosynthesis

Lightweight Catalyst For Artificial Photosynthesis - Featured Graphene Latest Innovations

Nanochemistry meets macrostructures: Chinese scientists report the synthesis of a macroscopic aerogel from carbonitride nanomaterials which is an excellent catalyst for the water-splitting reaction under visible-light irradiation. The study published in the journal Angewandte Chemie adds new opportunities to the material properties of melamine-derived carbonitrides.

Melamine can be polymerized with formaldehyde to give a highly durable and light resin, but it can also condensed to form nanostructures of carbonitride materials. These assemblies made of carbon and nitrogen combine the honeycomb-like electronically active network of with some extra functionality of nitrogen. Searching for ways to assemble these nanostructures into a stable macroscopic architecture, Xinchen Wang and his team at Fuzhou University in China have now prepared a catalytically highly active and stable lightweight material, which serves well in artificial photosynthesis and offers very interesting structural and electronic properties.

Aerogels are gels but without water–up to ninety-nine percent of their structure is air. This porosity gives them a huge surface ideal for catalytic or sensory application. As carbonitrides are materials with very interesting nanostructure and graphene-like properties but nitrogen functionality, it has long be sought to bring them into a controlled macroscopic assembly. “Since CN is rich in nitrogen-containing groups, it is expected that CN may have interesting assembly behaviors like proteins or peptides in biological systems,” the authors said.

 

The full story is available below.

Source: R&D Magazine

LEAVE A REPLY