Oxford Instruments To Commercialise Wafer-scale Fabrication For 2D MoS2

Oxford Instruments To Commercialise Wafer-scale Fabrication For 2D MoS2 - Featured Graphene Optoelectronics
Method from the UK’s National Physical Laboratory enables Oxford to carry out non-destructive quality control checks

While was the first 2D material to be studied in detail, there is now also a focus on others. Single-layer MoS2, a semiconducting 2D material, is generating a lot of interest due to its combination of electronic and optical properties that could pave the way for the next generation of and optoelectronics devices.

In order to commercialise electronic devices made of 2D materials, industry faces a challenge to carry out quality control checks without destroying or damaging the material. As a single-layer of a 2D material is only a single atom or molecule thick, assessing their quality so far has only been possible using destructive techniques.

Defects are expected to critically impact the performance of MoS2-based electronic devices, so the ability to investigate and quantify the number of defects without causing damage is crucial for enabling large-scale manufacture of the material and device fabrication.

Oxford Instruments, a provider of high technology systems and tools for industry and , looked to develop a new deposition system and process that could produce MoS2 in a more industrially-scalable manner to help further the commercialisation of MoS2. The team of researchers were in need of a suitable quality control approach, and turned to the research from the National Graphene Metrology Centre (NGMC), a leader in the characterisation and advanced measurement of 2D materials, at NPL.


The full story is available below.

Source: Compound Semiconductor